Articulatory Characteristics of the
Coronal Consonants in Malaysian Mandarin:
With Special Reference to the Non-“Canonical” Sibilants*

Huang Ting
Department of Linguistics & Philosophy
Massachusetts Institute of Technology

Chang Yueh-chin Hsieh Feng-fan**
Graduate Institute of Linguistics
National Tsing Hua University

ABSTRACT

This study is an articulatory investigation of the coronal consonants in Malaysian Mandarin, with special reference to the non-“canonical” realization of the sibilants. Our principal findings are: (i) d is apico-laminal dento-alveolar [t], (ii) s and sh are mostly laminal alveolar [ʂ], and z, zh are the same as those of the corresponding fricatives, (iii) x has two phonetic variants: laminal alveolar [ɕ] (“canonical”) and laminal (denti-)alveolar [ɕ] (non-“canonical”, fronted), and (iv) j, as compared to z and zh, has a wider midsagittal contact, i.e., apical dento-alveolar [tɕ]. Another important new finding is that the two variants of x are contextually conditioned. Specifically, the high front vowel [i] and the palatal glide [j] often co-occur with the non-“canonical”, fronted x (i.e., [ɕ]), while the “canonical” [ɕ] is found elsewhere. The phenomenon in question is attributable to language contact-induced sound change.

Key words: Malaysian Mandarin, coronal consonants, sibilants, palatography, linguography, language contact

* This paper is a substantially revised version of Chapter 2 of the first author’s doctoral dissertation from the National Tsing Hua University (Huang 2016). For valuable comments and assistance, we would like to thank two anonymous reviewers, Chuang Ching-ting, Chen Wei-rong, and audiences at the International Conference on Phonetics of the Languages in China (ICPLC-2013) at the City University of Hong Kong. Finally, special thanks go to our informants in Penang, Malaysia for their tireless help. This study is supported by the project “Multiculturalism in Monsoon Asia”, awarded to the National Tsing Hua University by the Ministry of Education of Taiwan.

** Huang Ting, a postdoctoral fellow at Department of Linguistics & Philosophy, Massachusetts Institute of Technology, email: funting.huang@gmail.com; Chang Yueh-chin, email: ycchang@mx.nthu.edu.tw; Hsieh Feng-fan, email: fhsieh@mx.nthu.edu.tw
1. Introduction

This study is an articulatory investigation of the syllable-initial coronal consonants of Malaysian Mandarin (henceforth MM), with special reference to the non-"canonical" realization of the sibilants before the high front vowel and the palatal glide. Like many other regional varieties of Mandarin Chinese, MM also contrasts three voiceless fricatives, represented as s - sh - x in the Pinyin Romanization system. Together with the aspirated affricates c - ch - q and non-aspirated affricates z - zh - j, these sibilants are formed at three distinct places of articulation, namely dental, retroflex and palatal, respectively (cf. Chao 1968; Duanmu 2000/2007; Karlgren 1915-1926; Ladefoged and Wu 1984; Lin 2007; among many others), as in (1). For ease of cross-dialectal comparison (see, e.g., Mohanan 1992), the Pinyin symbols are used to refer to the consonantal category (which may or may not differ in actual places of articulation).

(1) Three-way contrast of the sibilants in Malaysian Mandarin

<table>
<thead>
<tr>
<th>Pinyin</th>
<th>IPA</th>
<th>Examples</th>
<th>Place of articulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>z, c, s</td>
<td>[ts], [tsʰ], [s]</td>
<td>[tsa] 紮 ‘to tie up’</td>
<td>“Dental”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[tsʰa] 揉 ‘to erase’</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[sa] 撬 ‘to cast’</td>
<td></td>
</tr>
<tr>
<td>zh, ch, sh</td>
<td>[ʈʂ], [ʈʂʰ], [ʂ]</td>
<td>[ʈʂa] 渣 ‘dregs’</td>
<td>“Retroflex”^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[ʈʂʰa] 揳 ‘to insert’</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[ʂa] 殺 ‘to kill’</td>
<td></td>
</tr>
<tr>
<td>j, q, x</td>
<td>[ʈɕ], [ʈɕʰ], [ɕ]</td>
<td>[ʈɕa] 家 ‘home’</td>
<td>“Palatal”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[ʈɕʰa] 揳 ‘to strangle’</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[ɕa] 蝦 ‘shrimp’</td>
<td></td>
</tr>
</tbody>
</table>

^1 The term non-“canonical” here does not imply that these forms in Malaysian Mandarin are not “standard” and/or inferior to their counterparts in “Standard Chinese”. It is meant to highlight the fact that the phenomenon in (2) is not attested in many other varieties of Mandarin Chinese (see also section 4.2).

^2 We follow the “convention” to transcribe the sibilant sh in Mandarin Chinese as [ʂ]. But see Lee and Zee (2003) for a dissenting view: sh is transcribed as an apical post-alveolar [ʃ]. Note also that [ɕ] ([ʈɕ], [ʈɕʰ]) is a non-standard IPA symbol. They are used in Ladefoged (1957), Ladefoged and Wu (1984) and Lee and Zee (2003) to represent the alveolo-palatal sibilants. See also section 4 for more discussion.
While there is extensive discussion on the acoustic and articulatory characteristics of the three-way contrast of the sibilant sounds in Mandarin Chinese, little is known about the articulatory properties of the sibilants (and more generally, the coronal sounds) in understudied varieties of Mandarin Chinese in Southeast Asia, where the Chinese immigrants (as well as their descendants) have had long-term language contact with non-Chinese speech communities (e.g., Chen 2014; Xu and Zhao 2011). To fill the gap, this paper aims to document the places of articulation in the MM coronal sounds using palatography and linguography.

In addition, of particular interest are some non-“canonical” contextual variants of the sibilants. Specifically, one of the most salient hallmarks of Malaysian Mandarin, so to speak, is that ɕ may (optionally) undergo “fronting” when preceded by the high front vowel [i] and/or the palatal glide [j], resulting in variants of (“canonical”) [ɕ] and (non-“canonical”, fronted) [s]. Note that here we use an italicized [s] to represent the non-canonical, fronted ɕ in (2a), simply for ease of understanding. The experimental results indicate that the non-canonical variant of ɕ (i.e., [s] here) is better characterized as a fronted alveolo-palatal [ɕ̠], as will be discussed in §4.1. Interestingly enough, we see in (2b) that “palatal” affricates are more resistant to fronting, even though the sibilants j, q, ɕ are supposed to be homorganic. Specifically, our impressionistic data (N=270) from ten speakers of MM (mean age=24.4) showed that [ɕ] is “replaced” by [s] more frequently when followed by [i] (62.2%) than by [a] (44.4%), and [ts] is rarely found across the board (3.3%). More discussion regarding this asymmetry will be given in §4.2.

(2) a. Fronted vs. non-fronted (canonical) “palatal” fricatives in Malaysian Mandarin

<table>
<thead>
<tr>
<th>Pinyin</th>
<th>Malaysian Mandarin</th>
<th>Remarks (see text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
<td>[ɕi]</td>
<td>[ɕi] is infrequently found</td>
</tr>
<tr>
<td>xia</td>
<td>[ɕa]</td>
<td>[ŝa] is infrequently found</td>
</tr>
</tbody>
</table>

b. “Palatal” affricates not subject to fronting

<table>
<thead>
<tr>
<th>Pinyin</th>
<th>Malaysian Mandarin</th>
<th>Remarks (see text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ji/qi</td>
<td>[tɕi/ʨʰi]</td>
<td>[tɕi/ʨʰi] are rarely found</td>
</tr>
<tr>
<td>jia/qia</td>
<td>[tɕa/ʨʰa]</td>
<td>[tɕa/ʨʰa] are rarely found</td>
</tr>
</tbody>
</table>
In fact, similar dialectal variation has already been reported in Chen’s (1986) corpus study: a portion of the underlying palatal consonants (29.3% for [tɕ], 23.2% for [tɕʰ], 86.5% for [ɕ]) in Singaporean Mandarin (across ten speakers) are transcribed as their dental counterparts. Chen also notes that this palatal-to-dental “substitution” cannot be attributed to a fast speech effect, as it is found even in careful speech. To this end, this effort can also be regarded as a follow-up study of Chen (1986), investigating whether or not the sibilants in question undergo “fronting” in MM as well.

This paper is organized as follows. Section 2 introduces the methodology used, including a palatographic and linguographic experiment. Section 3 presents the articulatory characterization of the coronal sounds, followed by the discussion of their articulatory variations. Section 4 offers a comparison of the places of articulation for coronal sounds produced in Penang, Malaysia and in Beijing, China and argues that the contextual neutralization of the three-way contrast in MM may not be accidental. Also, it is worth noting that syllables like [si] in (2) are not found in many other varieties of Mandarin Chinese. Some possible explanations for this phenomenon will be discussed. Finally, section 5 concludes this paper.

2. Method

2.1 Participants

Seven speakers (six males and one female) participated in this study. The data from three of them (two males and one female) were excluded from analysis due to a data quality issue. Two of the remaining participants were in their 30s (M01, M02) and the other two (M03, M04) were in their 20s at the time of data collection. All participants were born and raised in Penang, Malaysia and have never left Penang for more than one year except for college. They all speak Penang Hokkien as their L1, and Malaysian Mandarin as their L2 and English or Malay as their L3 (see also section 4.2).

Some of our participants were very nervous during the experiments, resulting in obscured contact. They were not asked to be involved in the same task for research ethical reasons. Another problem was that female speakers in Penang were reluctant to take part in the experiments at night due to security reasons. So only the data from the male speakers are reported in this study.

Note that there may be cross-dialectal differences in the varieties of Mandarin Chinese spoken in Malaysia. We leave this issue for further studies. It is also remarkable that unlike Johor and Melaka in southern
speakers had a set of healthy teeth and reported no speech and hearing problems.

2.2 Articulatory Experiments: Palatography and Linguography

2.2.1 Data Collection

This experiment aimed to investigate the places of articulation of the seven coronal consonants, including voiceless stop \(d \), voiceless fricatives \(s \), \(sh \), \(x \), voiceless affricates \(z \), \(zh \), \(j \). The aspirated affricates and stops were not examined, since no systematic differences were found in the contact patterns between the unaspirated and aspirated sounds (see also Ladefoged and Wu 1984). Table 1 shows the test material in the frame of CV, where \(C = \{ t, s, ʂ, ɕ, ts, tʂ, tc \} \) and \(V = \{ i, a, u \} \). The dentals [s, ts] and retroflexes [ʂ, tʂ] cannot co-occur with the high front vowel [i] and the palatal glide [j], but with the syllabic approximant [ɹ̩] (Lee and Zee 2003). The wordlist was also controlled for lexical tone by choosing Tone 1, a high level tone, or more precisely, an upstepped mid tone /33↑/ (see also Huang 2016 for more details), wherever possible.

Table 1: The test material for palatograms and linguograms

<table>
<thead>
<tr>
<th>Target</th>
<th>Post-consonantal vocalic elements</th>
<th>ɑ [a]</th>
<th>ɪ [i]</th>
<th>ʊ [u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d [t])</td>
<td>ʈai³³³</td>
<td>ʈi³³³</td>
<td>ʈu³³³</td>
<td>痘 ‘pimple’</td>
</tr>
<tr>
<td>(s [s])</td>
<td>ʂa³³³</td>
<td>ʂi³³³</td>
<td>ʂu³³³</td>
<td>撒 ‘to cast’</td>
</tr>
<tr>
<td>(sh [ʂ])</td>
<td>ʂa³³³</td>
<td>ʂi³³³</td>
<td>ʂu³³³</td>
<td>殺 ‘to kill’</td>
</tr>
<tr>
<td>(x [ɕ])</td>
<td>ɕa³³³</td>
<td>ɕi³³³</td>
<td>ɕu³³³</td>
<td>螃 ‘shrimp’</td>
</tr>
<tr>
<td>(z [ts])</td>
<td>ʦa³³³</td>
<td>ʦi³³³</td>
<td>ʦu³³³</td>
<td>要 ‘to tie up’</td>
</tr>
<tr>
<td>(zh [tʂ])</td>
<td>ʦa³³³</td>
<td>ʦi³³³</td>
<td>ʦu³³³</td>
<td>虱 ‘dregs’</td>
</tr>
<tr>
<td>(j [tɕ])</td>
<td>ʨa³³³</td>
<td>ʨi³³³</td>
<td>ʨu³³³</td>
<td>家 ‘home’</td>
</tr>
</tbody>
</table>

(Tones are transcribed with Chao’s tone letters, in which 5 represents the highest pitch and 1 the lowest.)

Peninsular Malaysia, non-Mandarin Sinitic languages are still widely spoken in Penang (and Kuala Lumpur), although nationwide, only Mandarin Chinese is allowed in school nowadays. A language background screening was carried out before the experiments to ensure if the participants’ first language is Penang Hokkien, for example, questions such as whether or not they speak Penang Hokkien with their family and friends or which language they use to count money. In sum, it is not surprising that Penangites are “officially” exposed to Mandarin Chinese only after they enter primary school.

5 The “expected” form of ‘rest’ is [ɕou³³³], but forms like this undergo monophthongization in Malaysian Mandarin.

6 *[ʦu] is a gap due to the phonotactics of Mandarin Chinese.
2.2.2 Data Analysis

The direct method for palatography and linguography (Dart 1991; Ladefoged 1997, 2003) was adopted in this study.\(^7\) For palatography, a liquid medium of one part charcoal powder to two parts olive oil was painted onto the tongue with a small brush. During the utterance of the target word, the black marking medium was transferred from the tongue to the palate. A mirror (the one that comes with a Polaroid dental camera (Polaroid MACRO 5)) was then inserted into the speaker’s mouth at a 45° angle to the plane of the teeth. A photograph of the reflected image of the upper surface of the mouth was immediately taken using a CANON EOS M digital camera with an EF-M 22 mm STM lens. For linguography, the experimental procedure was reversed. The medium was applied on the upper articulators (the palate and the inner surface of the upper teeth), and transferred to the tongue during utterance. The speaker was asked to protrude the tongue for photographing. For each test word, two utterances were made for the palatogram and the linguogram, respectively. Therefore, it is not unlikely that the contact patterns of the upper articulator and lower articulator do not exactly match.

A dental-palate impression was made for each speaker in order to obtain his/her anatomical features for division of articulatory target regions (Figure 1). An alginate impression was taken to ascertain the shape of the upper articulator, and a plaster cast was then fabricated to create a permanent record of the palate and upper teeth. The contour line was drawn from the mid-point of the two frontal incisors to the palate, after the cast was cut in half (see also Anderson 2008; Ladefoged 1957).

The “place of articulation” includes not merely the precise target location on the upper articulator, but also the contact area on the lower articulator (Ladefoged and Maddieson 1996; Lee and Zee 2010). Descriptions of the contact patterns on the upper and lower articulators were extracted from palatograms and linguograms, respectively. Six articulatory zones are defined based on the individual anatomical features in the

\(^7\) Palatography and linguography are especially applicable to the field situation because of the following advantages: availability, portability and low cost in comparison with electronic devices such as Electropalatography (EPG), ultrasound, Electromagnetic Articulography (EMA) and real time MRI, and the information the techniques yield regarding both the tongue and the palate. Moreover, the data accuracy level has never been questioned in the literature (see Anderson 2008; Ladefoged 2003: 36-37 for more details).
sagittal plane (see also Catford 1977, 1988/2001; Jones 1972; Lee 1999a). As shown in Figure 1, the dental zone (1) begins at the apex of the front incisors and ends at the tip of the rim between incisor and gum at the mid-line. The dentialveolar zone (2) is the area between the end of zone 1 and the end of the frontal incisors. The alveolar zone (3) reaches back to the most prominent point on the alveolar ridge. The postalveolar zone (4) projects to the end of the alveolar ridge. The prepalatal zone (5) ranges from the end of zone 4 to the point at which the contour begins its downward slant. The palatal zone (6) proceeds to the end of the hard palate. Following Lee and Zee (2010) and subsequent work, a hyphen indicates contact involving more than one articulatory zone, which is meaningful in accounting for various characteristics of sounds. For example, alveolar-postalveolar refers to a contact extending from the alveolar zone to the postalveolar zone.

To interpret the linguograms, the tongue can be roughly divided into four sections: rim, apex (tongue tip), lamina (tongue blade), and dorsum. Similar to Dart (1998), the present study divides the area of lingual contact into three: (i) apical where lingual contact is made on the very tip and/or rim of the tongue; (ii) laminal where the tongue blade is involved; (iii) anterodorsal where the tongue body is raised to cause a wider palatolingual contact. Once again, a hyphen is used when the lingual contact involves two parts of the articulator. For example, in Figure 2, apicolaminal (or apical-laminal) refers to an extended contact area covering both the apex and the blade.
3. Results

3.1 Linguopalatal Contacts

3.1.1 Stop 𝑑

Figure 3 demonstrates the palatograms and linguograms of the syllable-initial stop 𝑑 for the test words [ta³³] ‘pimple’, [ti³³] ‘low’ and [tu³³] ‘to supervise’ from the four participants. As shown in the palatograms, for all the speakers except M01, the contact on the palate involves two articulatory regions, i.e., dentalveolar and alveolar (zones 2-3). The constriction starts at the halfway of the upper frontal incisors, extending to the alveolar ridge. The contact patterns are similar across the three vowel contexts of [a, i, u]. For M03, the contact on the palate is broader in the context of [u], with a closure involving three areas: dental, dentalveolar and alveolar (zones 1-3). For M01, the foremost constriction point is farther back, behind the upper central incisors, extending to the rear part of the alveolar ridge (zones 3-4). Thus, we can characterize the coronal stop 𝑑 of MM as primarily dentalveolo-alveolar.

The linguograms of the syllable-initial stop 𝑑 show similar broad contact patterns. The lingual contact is made mostly with the tip and the blade of the tongue, producing an extensive contact on the palate in at least two articulatory regions. In this case, 𝑑 is apico-laminal. A few cases show individual differences. The contact is made chiefly on the blade during [t] of [ta³³] and [tu³³] for M01 (Figure 3(a)), and noticeably the contact...
occurs further backward on the palate than it does for the other speakers. The lingual contact for M02 is slightly shorter, mainly on the upper surface of the tip. While the location of d in the midsagittal plane remains consistent across different vowels, the width of the lateral contact in the palatal region is noticeably increased in [ti], due to the raising of the tongue body. This is not unexpected, as (alveolo-)palatalization frequently occurs before high front vowels. In sum, the coronal stop d is best described as an *apico-laminal dentialveolo-alveolar* [t] for most of the cases.
3.1.2 Affricates \(z, zh, j \)

Figures 4-6 illustrate the linguopalatal contact patterns for the affricates \(z [ts], zh [tʂ] \) and \(j [tɕ] \). In Figure 4, the syllable-initial affricate \(z [ts] \) is shown in the vowel contexts of \([a̯, ɹ̩, u] \), i.e., \([tsa^{33}] \) ‘to tie up’, \([tsɹ̩^{33}] \) ‘source’, and \([tsu^{33}] \) ‘to rent’. The closure of \([ts] \) occurs mainly at the front part of the alveolar ridge, i.e., it is alveolar (zone 3) (for all the speakers except M01). For M01, the contact is farther back, mainly in the postalveolar region (zone 4). In a few cases, the contact is extended forward to dentalveolar during \([ts] \) of \([tsɹ̩^{33}] \) for M03, of \([tsa^{33}] \) for M04, and to dental during \([ts] \) of \([tsɹ̩^{33}] \) for M04. The articulatory region of \([ts] \) is affected little by the different vowels.

The linguograms for the most of the speakers show that \([ts] \) involves only a single part of the tongue, i.e., the blade, making contact on the upper palate. This is consistent with the observation that \([ts] \) has a shorter contact length\(^8\) than \([t] \)’s (38% versus 42%). There is only a single case (\([ts] \) of \([tsa^{33}] \) for M03), where the lingual contact is apicolaminal and is therefore broader than that produced by the others. To summarize, the affricate \(z \) is characterized mainly as laminal alveolar \([tʂ] \).

\(^8\) One of the means quantifying “the length of central constriction” is to obtain the ratio of a central contact length \((L1)\) over a baseline \((L2)\). \(L1\) represents the absolute contact measurement (in mm) in the sagittal plane; \(L2\) indicates the length from the tip of the upper frontal incisors to the zone 5 line (cf. Lee and Zee 2010). The central contact length reported in this study is \(L\% = L1/L2 \times 100\%\).
Figure 4: Palatograms (upper) and linguograms (lower) of MM affricates [ts] of [tsa33] ‘to tie up’, [ts33] ‘source’, and [tsu33] ‘to rent’ across the four speakers
Figure 5 presents the linguopalatal contact patterns for zh \([\text{tʂ}]\) for the test words \([\text{tʂʰa}^{33}]\) ‘dregs’, \([\text{tʂɾʰ}^{33}]\) ‘to know’, and \([\text{tʂʰu}^{33}]\) ‘pig’. The palatograms show that (i) similar to \([\text{ts}]\), \([\text{tʂ}]\) is produced with a postalveolar articulation (zone 4) for M01, and an alveolar articulation (zone 3) for the other speakers; (ii) the central contact mainly occurs within a single region; and (iii) there is little coarticulation to affect the location of central contact. The obtained data reveal that M03 has an extended forward contact when producing zh before the vowel [a] (Figure 5(c)).

In the linguograms, \([\text{tʂ}]\) is produced with the blade of the tongue. M03 differs from the other speakers in producing a broader contact on the lamina and/or the upper surface of the apex. In sum, the “retroflex” affricate zh is primarily a laminal alveolar articulation [tʂ].
Articulatory Characteristics of the Coronal Consonants in Malaysian Mandarin

Figure (c): /tʂa/ M03

Figure (d): /tʂɻ/ M03

Figure (e): /tʂu/ M03

Figure (f): /tʂa/ M04

Figure (g): /tʂɻ/ M04

Figure (h): /tʂu/ M04
Figure 5: Palatograms (upper) and linguograms (lower) of the affricates [tʂ] of [tʂa³³] ‘dregs’, [tʂɻ̩³³] ‘to know’, and [tʂu³³] ‘pig’ across the four speakers.

Figure 6 presents the linguopalatal contact patterns for the syllable-initial j [tɕ] for the test words [tɕa³³] ‘home’, [tɕi³³] ‘foundation’, and [tɕy³³] ‘to live’. There is a discrepancy in contact patterns between the elder speakers (M01, M02) and the younger speakers (M03, M04). For the elder speakers, a closure of [tɕ] is formed in the postalveolar (zone 4) for M01 and in the alveolar region (zone 3) for M02. In the linguograms, [tɕ] for both of the speakers involves an articulation produced by the tongue blade. [tɕ] is different from [ts] and [tʂ] in two respects: (i) the contact is slight broader in the sagittal plane, and (ii) the lateral width behind the prepalatal zones is increased, indicating that [tɕ] undergoes a large degree of (alveolo-)palatalization.

On the other hand, the contact area is “more extensive” for the younger speakers (M03, M04). In the majority of the cases, the palatographic contact is extended form the dentalveolar region to the alveolar region (zones 2-3); the lingual contact is mainly on the upper surface of the apex. This observed contact pattern is true not only for the two younger speakers reported here, but also for the other two younger speakers (one male, one female; not included in this paper due to a data quality issue). There is a noticeable coarticulatory effect: the central contact is smaller (i.e., not extended forward) before [y] than [a] and [i]. The contact may span over three articulatory zones—dental, dentalveolar, alveolar, especially for [tɕ] of [tea] for M04. This conforms to Dart’s (1991) observation that “upperapical” (i.e., the upper surface of the apex) articulation could involve more contact on the inner surface of the frontal incisors, producing an extended contact. Similarly, the width of the lateral contact in the palate region is broader.
than those for [ts] and [tʂ] across the younger speakers, suggesting a large degree of (alveolo-) palatalization.

In sum, the MM affricate j is mainly characterized as laminal alveolar [tɕ] for the elder speakers (M01, M02), and apical dentalveolo-alveolar [tɕ] for the younger speakers (M03, M04).
(c) /tɕa/ /tɕi/ /tɕy/ M03 M03 M03

(d) /tɕa/ /tɕi/ /tɕy/ M04 M04 M04
Figure 6: Palatograms (upper) and linguograms (lower) of the affricates [tɕ] of [tɕɑ̃]
‘home’, [tɕi̩] ‘foundation’, and [tɕỹ] ‘to live’ across the four speakers

3.1.3 Fricatives ʂ, ʂh, ɕ

Figure 7 presents the linguopalatal contact patterns for the syllable-initial ʂ [s] for the test words [sɑ̃] ‘to cast’, [sɹ̩] ‘to manage’, and [sũ] ‘Christ’. In a majority of the cases (M02~M04), the maximal constriction point is at the front of the alveolar ridge (zone 3). In contrast, for M01, the foremost constriction point for [s] is at the back part of the alveolar ridge (zone 4), right beside the first premolars.

A comparison of the articulatory target regions reveals two principal findings: (i) [s] patterns with [ts], but not with [t]. Specifically, [s] is articulated in the same area as [ts], and both onsets have the contact mainly in a single region; (ii) there is no influence on the precise contact location from the various vowels.

The corresponding linguograms indicate that the tongue blade is the major active articulator during the production of [s]. Accordingly, the MM fricative ʂ in a majority of the cases is laminal alveolar [s].
Articulatory Characteristics of the Coronal Consonants in Malaysian Mandarin

Figure 7: Palatograms (upper) and linguograms (lower) of the fricative [s] of [sa][33]
‘to cast’, [sɹ][33] ‘to manage’, and [su][33] ‘Christ’ across the four speakers.

Figure 8 demonstrates the linguopalatal contact patterns for the syllable-initial [ʃ] for the test words [ʃa][33] ‘to kill’, [ʃɹ][33] ‘teacher’, and [ʃu][33] ‘book’. Like the articulation of [s], the maximal constriction of [ʃ] occurs primarily in the postalveolar region (zone 4) (M01) or the alveolar region (zone 3) (the other three speakers). There is a noticeable variation in the production of [ʃ] among speakers: in a single case (M02), [ʃ] has a posterior contact when followed by the vocalic segment [ɹ]. In the linguograms, [ʃ]
shows a laminal articulation. For M03, the contact on the lamina is much more significant in the context of [ɹ] than [a, u]. The wider contact implies that the tongue root is advanced during production of the “retroflex” sh, making the tongue front “bunched up lengthwise” (Ladefoged and Wu 1984: 271). Taking the data together, the fricative sh has a laminal alveolar articulation.
Articulatory Characteristics of the Coronal Consonants in Malaysian Mandarin

(c) /ʂa/ /ʂɹ/ /ʂu/
M03 M03 M03

(d) /ʂa/ /ʂɹ/ /ʂu/
M04 M04 M04
Figure 8: Palatograms (upper) and linguograms (lower) of MM fricative [ʂ] of [ʂa]\(^{33}\) ‘to kill’, [ʂɹ̩]\(^{33}\) ‘teacher’, and [ʂu]\(^{33}\) ‘book’ across the four speakers

Figure 9 demonstrates the linguopalatal contact patterns for the syllable-initial ɻ [ɕ] for the test words [ɕa]\(^{33}\) ‘shrimp’, [ɕi]\(^{33}\) ‘west’, and [ɕu]\(^{33}\) ‘rest’. The contact for [ɕ] is primarily made in the alveolar regions (zone 3), but slightly backward in the postalveolar region (zone 4) for M01. The lingual contact for [ɕ] is laminal; as compared to [s], the lateral contact in the palatal region is much wider. Therefore, ɻ is characterized chiefly as laminal alveolar [ɕ].

However, with careful examination, we noticed that [ɕ] displays much more variation in its contact pattern between the generations and across the vowel contexts. For the “elder” speakers in their 30s (M01, M02), the foremost contact point falls in the alveolar region (zone 3), with a stretch that is absent in [s] extending to the palatal zone (zone 5). In contrast, for the “younger” speakers in their 20s (M03, M04), there is no such contact extension. Note also that the contact point is pulled forward to the dentalveolar zone (zone 2) when [ɕ] is followed by [i], and in the alveolar zone (zone 3) when followed by [u]. For the “younger” speakers (M03, M04), ɻ is not a “canonical” [ɕ]; perceptually and articulatorily, ɻ is more “anterior”, and may be characterized as laminal (denti-)alveolar [ɕ̘] (see more discussion in §3.2).
Articulatory Characteristics of the Coronal Consonants in Malaysian Mandarin

(a) M01 M01 M01

/ɕa/ /ɕi/ /ɕu/

(b) M02 M02 M02

/ɕa/ /ɕi/ /ɕu/
Figure 9: Palatograms (upper) and linguograms (lower) of the fricative [ɕ] of [ɕa^33^] ‘shrimp’, [ɕi^33^] ‘west’, and [ɕu^33^] ‘rest’ across the four speakers
3.2 Articulatory Characteristics of the Sibilant x

Let us now turn to the surface variants of the sibilant x. Recall from (2) that when preceding the high front vowel [i] and/or the palatal glide [j], this “palatal” fricative may be optionally “fronted”, resulting in a more anterior sound (see (2)).\(^9\) As shown in the previous section, the variability of x is significant, i.e., fronted [ɕ] versus non-fronted, canonical [ɕ]. In this sense, the present study replicates Chen’s (1986) results: we found that (some of) our Malaysian Mandarin speakers do not consistently pronounce x as [ɕ] in certain environments (e.g., before [i, j]). To fully understand the characteristics of the fronted [ɕ], an articulatory analysis of the two variants is presented in this section.

Figure 10 shows a comparison of the linguopalatal contact patterns of s and x, where s is followed by the approximant [ɹ̩] and x is followed by the high front vowel [i]. We noted an apparent age effect on the place of articulation of x. For the “younger” speakers in their 20s (M03, M04), the predominant contact of s and x both occurred in the alveolar zone (or even slightly forward of there) (Figures 10(a)-(b)). Linguographically, s and x both involve the blade of tongue. The lateral contact of x is wider than that of s, probably because x must be followed by a high front vowel or palatal glide, both of which necessitate the raising of the tongue body. In contrast, for the “elder” speakers in their 30s (M01, M02), the principal contact made during the production of x was broader. For illustration, M02’s x displays a contact in the alveolar zone, extending to the postalveolar zone (Figure 10(c)). Linguographically, the lateral contact produced in the palatal zone by the “elder” speakers is much wider (i.e., with a remarkable contact in the palatal zone) than that produced by the “younger” speakers. Therefore, we may conclude from the present experimental results that x is a canonical [ɕ] for the elder speakers (M01 and M02), whereas it is a fronted [ɕ̘] for the younger speakers (M03 and M04).

\(^9\) Recall from (2) that the “palatal” affricates are rarely fronted (cf. Chen 1986). See section 4.2 for more discussion.
To recapitulate, [ɕ] is distinct from [s] in three respects: (i) the foremost contact in front-back dimension is broader; the foremost contact extends to the palatal region for the “elder” speakers, but not for the “younger” speakers; (ii) the front part of the dorsum may be raised to a variable height, causing different degrees of (alveolo-)palatalization; the increased width of lateral contact on sides of the palatal region is much more significant for the “elder” speakers than for the “younger” speakers; (iii) a noticeable coarticulatory effect is observed among the “younger” speakers; the constriction point is anterior before [i], and posterior before [u]; (iv) χ is laminal alveolar [ɕ] for the “elder” speakers, and laminal (denti-)alveolar [ɕ] for the “younger” speakers.

All in all, it appears that the three-way contrast among the sibilants is undergoing reduction in Malaysian Mandarin. For the “dental” versus “retroflex” contrast, no difference was observed in the contact on the palate and on the tongue. For the “dental” versus “palatal” contrast, we observed a generational discrepancy. Specifically, the speakers in the 30s (M01 and M02) tend to produce an alveolo-palatal variant of χ, while

10 The representative examples are taken from (a) [sɹ̩] ‘to think’ produced by M03 (the younger speaker), (b) [ɕi] ‘west’ by M03 (the younger speaker), and (c) [ɕi] ‘west’ by M02 (the elder speaker).
the speakers in their 20s (M03 and M04) tend to produce a more fronted, “non-palatal” version. Note that the conclusion reported here is primarily drawn from the male speakers. Some articulatory and acoustic difference may be found across gender. We leave this issue in the future study.

3.3 Summary

Table 2 summarizes the articulatory characterization of the coronal sounds in the variety of Malaysian Mandarin spoken in Penang. As has been reported in many other studies, we too found interspeaker variation in the articulation of these sounds. However, some generalizations can be drawn across the four speakers. More specifically, the stop d has the largest contact, made by the apex and blade of tongue (i.e., apicolaminal). For the coronal fricatives and affricates, we found that s, z are not substantially different from sh, zh with respect to the contact on the upper palate and the tongue. For the “palatal” sounds, we found some variations in x and j. For the “elder” speakers in their 30s, j is a laminal alveolar articulation, and it is apical dentalveolo-alveolar for the “younger” speakers in their 20s. x also displays larger articulatory variation across speakers, surfacing as (i) laminal alveolar [ɕ] for the “elder” speakers in their 30s and (ii) laminal (denti-)alveolar [ɕ̘] for the “younger” speakers in their 20s.

Table 2: Places of articulation for the coronal sounds in Malaysian Mandarin

<table>
<thead>
<tr>
<th></th>
<th>M01</th>
<th>M02</th>
<th>M03</th>
<th>M04</th>
</tr>
</thead>
<tbody>
<tr>
<td>stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>laminal alveolo-postalveolar [t]</td>
<td>apical dentalveolo-alveolar [t]</td>
<td>apico-laminal dentalveolo-alveolar [t]</td>
<td>apico-laminal dentalveolo-alveolar [t]</td>
</tr>
<tr>
<td>s</td>
<td>laminal postalveolar [ʃ]</td>
<td>laminal alveolar [ʂ]</td>
<td>laminal alveolar [ʂ]</td>
<td>laminal alveolar [ʂ]</td>
</tr>
<tr>
<td>sh</td>
<td>laminal postalveolar [ʃ]</td>
<td>laminal alveolar [ʂ]</td>
<td>laminal alveolar [ʂ]</td>
<td>laminal alveolar [ʂ]</td>
</tr>
<tr>
<td>x</td>
<td>laminal postalveolar [ɕ]</td>
<td>laminal (denti-)alveolar [ɕ]</td>
<td>laminal (denti-)alveolar [ɕ]</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>laminal postalveolar [tʃ]</td>
<td>apical alveolar [ʦ]</td>
<td>laminal alveolar [ʦ]</td>
<td></td>
</tr>
<tr>
<td>zh</td>
<td>laminal postalveolar [tʃ]</td>
<td>apical alveolar [ʦ]</td>
<td>laminal alveolar [ʦ]</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>laminal postalveolar [tɕ]</td>
<td>apical dentalveolo-alveolar [tɕ]</td>
<td>apical dentalveolo-alveolar [tɕ]</td>
<td>apical dentalveolo-alveolar [tɕ]</td>
</tr>
</tbody>
</table>

(The hyphen “-” is used to denote the extension of contact area (see Lee and Zee 2010).)

4. Discussion

4.1 Places of Articulation: Linguographic and Palatographic Perspectives

In the literature, s, z were impressionistically transcribed as *dental, sh, zh retroflex*, and x, j *palatal* in Beijing Mandarin (Chao 1968; Duanmu 2000/2007; Karlgren 1915-1926; Ladefoged and Wu 1984; Lin 2007; among many others). Instrumentally speaking, nevertheless, Ladefoged and Wu (1984) suggested that there is no simple way to specify the three types of sibilants with a discrete set of places of articulation, as their data of palatography and X-rays from three speakers revealed substantial variations in articulatory target regions. Specifically, the position of s at the maximal constriction can vary from *dental to alveolar; x* is somewhere between s and sh and is not a “palatalized” version of either one. More recently, Lee (1999a) and Lee (2008) analyzed the palatography and linguography of the coronal consonants from the younger and the older generations of Mandarin Chinese speakers in Beijing. The results show that the two generations show slight difference in the contact on the tongue, but no difference on the palate. For instance, s is *laminal* for the older (Pekingese) speakers, but *apical or laminal* for the younger (Beijing Mandarin) speakers. A comparison of the articulatory data between Malaysian Mandarin and Beijing Mandarin (Lee 1999a; Lee and Zee 2003), both obtained from the younger speakers (below 30 years old), is itemized in Table 3.

There are several points to note about Table 3. In both Mandarin varieties, d has a wide contact (*dentalveolo-alveolar*), produced by the tongue tip and blade. Next, the sibilants are produced very differently in the two language variants. In Beijing Mandarin, s and sh contrast in anteriority: s is *denti-alveolar or alveolar*, whereas sh and x are both *postalveolar*, but differ in apicality; more precisely, sh involves the tongue tip (i.e., *apical*), making contact on the posterior zone of the alveolar ridge, whereas x involves the simultaneous raising of the blade and the front portion of the dorsum to the alveolo-palatal region, as reported in previous X-ray studies (Ladefoged and Wu 1984) and real-time MRI studies (Proctor et al. 2012).

11 Note that Ladefoged and Wu’s (1984) observations were not made on the anatomically defined regions (e.g., Lee 1999b) and no linguography data were available for cross-comparison (see, for example, Dart (1991) for more discussion).
Table 3: Patterns of linguopalatal contact for the coronal consonants in Beijing Mandarin and Malaysian Mandarin (Based on the data from younger speakers)

<table>
<thead>
<tr>
<th></th>
<th>Beijing Mandarin</th>
<th>Malaysian Mandarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>stop</td>
<td>d apico-laminal</td>
<td>apico-laminal</td>
</tr>
<tr>
<td></td>
<td>dentalveolo-alveolar [t]</td>
<td>dentialveolo-alveolar [t]</td>
</tr>
<tr>
<td>fricative</td>
<td>s apico-laminal or laminal</td>
<td>laminal</td>
</tr>
<tr>
<td></td>
<td>denti-alveolar or alveolar [s]</td>
<td>alveolar [ʂ]</td>
</tr>
<tr>
<td></td>
<td>sh apical postalveolar [ʃ]</td>
<td>laminal</td>
</tr>
<tr>
<td></td>
<td>lamino-anterodorsal</td>
<td>alveolar [ʂ]</td>
</tr>
<tr>
<td></td>
<td>postalveolar or prepalatal [ɕ]</td>
<td>lamino-(denti-)alveolar [ɕ]</td>
</tr>
<tr>
<td></td>
<td>x apical-laminal or laminal</td>
<td>laminal</td>
</tr>
<tr>
<td></td>
<td>denti-alveolar or alveolar [ʦ]</td>
<td>alveolar [ʦ]</td>
</tr>
<tr>
<td></td>
<td>zh apical postalveolar [ʃʃ]</td>
<td>laminal</td>
</tr>
<tr>
<td></td>
<td>apical-antrodorsal or</td>
<td>alveolar [ʦ]</td>
</tr>
<tr>
<td></td>
<td>lamino-antrodorsal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>alveolo-palatal [tɕ]</td>
<td>apical dentalveolo-alveolar [tɕ]</td>
</tr>
</tbody>
</table>

(The hyphen “-” is used to denote the extension of contact area (see Lee and Zee 2010).)

In contrast, this distinction is not attested in Malaysian Mandarin. Palatographically, the primary point of contact for s, sh, x is almost the same in MM, i.e., alveolar. x is realized as a more “anterior” variant: (denti-)alveolar [ɕ]. Based on these findings, we suggest that the three-way sibilant contrast, still observable in Beijing Mandarin, has not been maintained in Malaysian Mandarin. Linguographically, all three sounds are laminal in MM, while the lateral contact is wider in production of x. sh displays no contact on the tip or the upper surface of the apex, suggesting that it deviates from its Beijing Mandarin counterpart in terms of apicality. As for x, the MM data show three major differences in the articulation of the segment compared to Beijing Mandarin: (i) the location of the principal contact on the palate is more anterior (i.e., in the (denti-)alveolar zone); (ii) the contact location varies with vowel contexts: x is significantly more “fronted” before high front vowel [i]; (iii) there is no obvious central anterodorsal contact, which leads to a minor increase in the lateral contact.

Lastly, it is also remarkable that the articulatory patterns of z and zh are similar to those found in the corresponding fricatives (i.e., s and sh), while this observation does

12 The contact difference between s and sh or z and zh is not significant, at least for the male speakers in
not hold true for \(j \). Specifically, the principal point of contact for \(j \) is more forward and extensive than for the corresponding fricative \(x \), as we have already discussed above.

4.2 Language Contact-induced Sound Change

One point on which we are silent is how the fronting of \([ɕ]\) to \([ɕ̘]\) is motivated in Malaysian Mandarin. It seems reasonable to attribute this phenomenon in question to the effect of L1 transfer — especially considering that Penang Hokkien, the local dominant language of the Malaysian Chinese community, has only two sibilants, /s/ and /ts/, like most (sub-)dialects of Southern Min. If Penang Hokkien shows no Front Vowel Palatalization (hereafter FVP; e.g., \(/si/ \rightarrow [ɕi]\)), there would be no reason for palatalization to occur in L2 acquisition (i.e., of Malaysian Mandarin). While it is safe to say that L1 interference serves as an explanation for non-“canonical” forms and structures in other regional varieties of Mandarin Chinese, we believe that cannot be entire story for the “fronting” of \([ɕ]\) to \([ɕ̘]\) in MM. Some discussion is in order. First, the “canonical” sibilant \(x \) is not unattested before \([i, j]\), albeit less frequently (i.e., 37.8% out of 270 tokens; see also (2)). In other words, there is indisputably some substantial degree of gradience, which cannot be entirely captured by the effect of L1 interference. Second and more importantly, a pilot study of Front Vowel Palatalization in Penang Hokkien confirms that FVP is not impossible in Penang Hokkien. Figure 11 presents a comparison of the palatograms for the syllable /si/ in Penang Hokkien between an “elder” speaker (M02) and a “younger” speaker (M03). As we can see, /s/ may have different contact patterns when preceded by \([i]\). For the elder speaker (11 (a)), the contact extends from the alveolar zone to the postalveolar zone; for the younger speaker (11 (b)), the contact area is solely in the alveolar region. These findings suggest that FVP is absent in the younger speaker, whereas the elder speaker showed the “expected” FVP pattern /si/ \(\rightarrow [ɕi]\). Incidentally, FVP of this sort is also attested in other dialects of Southern Min Chinese, such as Taiwanese Southern Min and Xiamen Chinese.

this study (compare Figures 4 and 5, 7 and 8). Specifically, the experimental results showed that \(sh \) and \(zh \) are not produced at a more posterior contact point than \(s \) and \(z \), as Beijing Mandarin does (Lee 1999a; Lee and Zee 2003). It is concluded that both of the categories are not (at least) articulatorily distinguishable.
These pilot study findings are thus consistent with the results of the linguographic and palatographic study presented above: recall that the fronting of the sibilant χ in Malaysian Mandarin is mostly found among the “younger” speakers of both Malaysian Mandarin and Penang Hokkien. So the next question is: “how and why has the fronting of the sibilant χ taken place (mostly) among the younger speakers in this region?” We may entertain the possibility of a contact-induced sound change. Education is primarily given in Malay (and English) after the independence of Malaysia, even for ethnic Chinese people. Given that neither Malay nor English exhibits FVP (at least non-postlexically), it is reasonable to posit that younger speakers, who have been much more exposed to Malay and English in school, tend not to produce an alveolo-palatal sibilant before a high front vowel/palatal glide. Consider (3): English contrasts [s] and [ʃ], and Malay has [s], along with a small number of [ʃ] from Arabic loanwords. Note further that the alveolo-palatal fricatives in English are labialized (a classic enhancement effect; cf. Stevens et al. 1986), making English [ʃᵻ] perceptually dissimilar to Mandarin [ɕi]. As for Malay, /ʃ/ (represented as “sy” in orthography) is mostly found in Arabic loanwords. So the speakers are exposed to many more exemplars of [si]. Taking these pieces of evidence together, it is tempting to postulate that [si], but not [ɕi], may be favored under “cross-linguistic (paradigmatic) uniformity”. Elder speakers, however, may not be frequently exposed to tokens such as [si] in school (or elsewhere), with the result that fronting of the sibilant χ is not (or less frequently) found in their speech.
Fricatives in the four major languages in Penang, Malaysia

<table>
<thead>
<tr>
<th>Language</th>
<th>[si]</th>
<th>[si]</th>
<th>/si/→[si]</th>
<th>[si] (younger speakers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>[si]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malay</td>
<td>[si]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penang Hokkien</td>
<td></td>
<td>/si/</td>
<td>[si]</td>
<td></td>
</tr>
<tr>
<td>Malaysian Mandarin</td>
<td></td>
<td></td>
<td>[si] (younger speakers)</td>
<td></td>
</tr>
</tbody>
</table>

Another welcome result of the contact-based account of the fronting of [ɕ] to [ɕ] is the explanation it provides for the paucity of “fronted” ʪʪ ([ʦi/ʦi],[ʈʂi/ʈʂi]) uncovered in this study. As we have seen in section 3.1, both elder and younger speakers often, if not always, produce the canonical [ʨi] only. A similar finding was reported in Chen’s (1986) study on the “substitution” of sibilants in Singaporean Mandarin, according to which 29.3% of instances of [ʨ] were “replaced” with a dental [ʦ], 23.2% of [ʨʰ] were replaced with a dental [ʦʰ], and 86.5% of [ɕ] with a dental [s]. From a purely phonological perspective, it is puzzling why affricates should prove more resistant to fronting than fricatives — since, all else being equal, [ɕ] and [ʨ] are not indistinguishable in terms of place features. We believe that this problem dissolves, however, if language contact is taken into consideration. More specifically, neither English nor Malay has [ʦ] in its phoneme inventory (see (4)). As a result, Mandarin speakers in Penang have no access to tokens such as [ʦi]; furthermore, they do have supporting evidence for FVP in this context, since the affricate /ʦ/ undergoes (alveolo-)palatalization in Penang Hokkien (i.e., /ʦi/ → [ʨi]; see Figure 12). It therefore follows that the fronting of the affricates is not attested for syllables such as [ʨi] in MM.

![Figure 12: Distinct contact patterns of [ʦi] in Penang Hokkien for an elder speaker (a) and a younger speaker (b)](image-url)
(4) Affricates in the four major languages in Penang, Malaysia

<table>
<thead>
<tr>
<th>English</th>
<th>Malay</th>
<th>Penang Hokkien</th>
<th>Malaysian Mandarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[tsi]</td>
<td>[tsi]</td>
<td>/tsi/ → [tɕi] (younger speakers)</td>
<td>[tɕi] (younger speakers)</td>
</tr>
<tr>
<td>[tʃi/dʒi]</td>
<td>[tʃi/dʒi]</td>
<td>/tsi/ → [tɕi] (elder speakers)</td>
<td>[tɕi] (elder speakers)</td>
</tr>
</tbody>
</table>

Finally, an anonymous reviewer pointed out that the fronting phenomenon might be due to “a relic of earlier contact” probably before the First World War, although according to Tan (2000), Mandarin was adopted as the common medium of instruction only in the 1920s, while “the early Chinese schools had taught in the dialects as they were set up to meet the needs of the children of Cantonese, Hokkiens and Hakkas” (See 2013). At any rate, indeed, it is worth mentioning that the phenomenon observed here is reminiscent of the so-called “feminine speech”13 reported in the city of Beijing, where some young female speakers of Beijing Mandarin tend to produce more fronted palatal sibilants preceding a high front vowel/palatal glide (Cao 1987; Chao 1968; Hu 1991; among others). However, it is highly unlikely that the feminine speech in Beijing has any bearing on the fronting of the fricative χ in Malaysian Mandarin because the fronted sibilants are not a widespread phenomenon and, more importantly, have never been recognized as “standard” pronunciation in school education. Finally, this “earlier contact” account based on feminine speech still cannot accommodate the asymmetry in (3) and (4), namely that the affricates j and q are not subject to fronting in MM (cf. Chen’s (1986) study of Singaporean Mandarin), even though j, q, χ are essentially homorganic (Table 3). It is important to reiterate that no such asymmetry has ever been reported for feminine

13 Cao (1987) made a survey of 200 Beijing speakers, and found that 85 percent of females and 29 percent of males do not have the true “palatals”. The sibilants j, q, χ are pronounced as the postalveolars [ʃ, ʃʰ, ʃ] at a point between the true dentals and palatals (see also Xu 1957). More recently, Beckman et al. (2014) reported that fronted sibilants of this sort are also produced by some younger speakers of Songyuan Chinese, a Mandarin dialect spoken in the Northeastern Chinese province of Jilin. From a socio-phonetic perspective, Beckman et al. (2014) treat the emergence of the fronted sibilants in Songyuan Chinese as dialect borrowing for the sake of social status. Incidentally, it has been convincingly shown in Hu (1991) that the feminine speech does not really reflect the so-called “sharp and round” (i.e., palatal vs. non-palatal) distinction in early Mandarin. Neither does the fronting of the sibilants, because, for example, χ ‘hope’, historically with a palatal/“round” sibilant onset is mostly pronounced [ɕi] ([$tɕi$]) in this study.
speech or any other varieties of Mandarin Chinese, to the best of our knowledge. The same reviewer further questioned if the “source” could be a southern variety of Mandarin Chinese so that the fronting phenomenon is motivated. Again, on the one hand, the paucity of the fronted affricates as in MM has never been reported elsewhere in the literature. On the other hand, our field experience is that the Chinese education (after the independence of Malaysia) had long been based on teachers and textbooks from Taiwan until recently. It is uncontroversial that the fronted fricatives and affricates are not found in Taiwanese Mandarin (and Taiwanese Southern Min), while in recent years, there is no denying that the Chinese education in Malaysia has been heavily influenced by China. Once again, as mentioned earlier, the fronted sibilants have never been recognized as “standard” in China as well. All in all, we suggest that the fronted fricative be more likely to be an innovative, contact-induced sound change on its own right.

5. Conclusion

This work is a palatographic and linguographic study of the coronal sounds of Malaysian Mandarin spoken in Penang. The principal findings are: (i) \(d \) is *apico-laminal dentialveolo-alveolar* \([t]\); (ii) \(s \) and \(sh \) are mostly *laminal alveolar* \([s]\) (compare: \(sh \) of Beijing Mandarin is *apical postalveolar* \([ʃ]\]); (iii) \(x \) has two phonetic variants, i.e., *laminal alveolar* \([ɕ]\) (canonical) and *laminal dentialveolar* \([ɕ̘]\) (fronted); and (iv) the contact patterns of affricates \(z, zh \) are the same as those of the “homorganic” fricatives, whereas \(j \), as compared to \(x \), has a wider contact, i.e., *apical dentialveolo-alveolar* \([tʃ]\). Finally, another important new finding in this study is that \([ɕ]\) and \([ɕ̘]\) are not in free variation. Phonologically speaking, this contextual variation is problematic because the high front vowel and the palatal glide share a *bona fide* distinctive feature for (alveolo-) palatalization. Therefore, our conclusion is that the fronting of the sibilants is very likely due to an intensive language contact with the other non-Chinese languages, i.e., Malay and English. In this regard, this study also contributes to a growing body of work on the phonetic and phonological characteristics of regional varieties of Mandarin Chinese. Needless to say, a glaring limitation of this study is the small number of the participants.
so that the current observations may be, to some extent, inconclusive. Also, there may well be regional differences in the varieties of Mandarin Chinese spoken in Malaysia. We acknowledge these problems, with the hope that more intensive, large-scale studies could be conducted for a more comprehensive understanding of the phenomena in question.

(Proofreader: Li Qi-hong)
References

Xu Li-shan 許麗姍 and Zhao Liang 趙亮. “Malaiixiya Binchengzhou Huaren Qingshaonian Yuma Zhuhanhuan zhi Shehui Biaoxian Yanjiu 馬來西亞檳城州華人青少年語碼轉換之社會表現研究 (Study of Social Manifestation on Code-Switching of Chinese Teenage Students in Pulang Pinang of Malaysia),” *Nanyang Wenti Yanjiu 南洋問題研究 (Southeast Asian Affairs)*, 1, 2011, pp. 61-72.

馬來西亞華語舌冠音的構音研究：
特究其「非典型」嘶擦音的可能來源

黃婷
麻省理工學院語言學暨哲學系
funting.huang@gmail.com

張月琴 謝豐帆
國立清華大學語言學研究所
ycchang@mx.nthu.edu.tw ffhsieh@mx.nthu.edu.tw

摘要
本研究旨在調查馬來西亞（檳城）華語舌冠音的構音特徵，特別著眼於嘶擦音的「非典型」發音性質。主要研究結果彙列於下：（一）塞音 d 的顎位遍及齒齦（dentalveolar）和齒槽（alveolar）兩區，舌位則包括舌尖和舌葉；（二）擦音 s、sh 和塞擦音 z、zh 發音部位大致相同，皆為舌葉齒槽音；（三）擦音 x 有兩個語音變體，分別為典型得齒槽音 [ɕ] 和位置偏前的齒齦舌音 [ɕ̃]；（四）塞擦音 j 的接觸面積較大，為一舌尖面音，碰觸齒齦及齒槽兩區。本研究另外發現 x 的語音變體基本上由環境制約：在馬來西亞（檳城）華語中，引發顎化現象的前高母音及介音 [i, j] 常與非典型、偏前變體 [ɕ̃] 相拼，而典型變體 [ɕ] 則多出現於其它環境。本文認為該現象很有可能是語言接觸後的音變結果。

關鍵詞：馬來西亞華語，舌冠音，嘶擦音，假顎圖，舌面圖，語言接觸

（收稿日期：2016. 2. 29；修正稿日期：2016. 5. 3；通過刊登日期：2016. 6. 7）